HW05 - H Atom and Electron Configuration

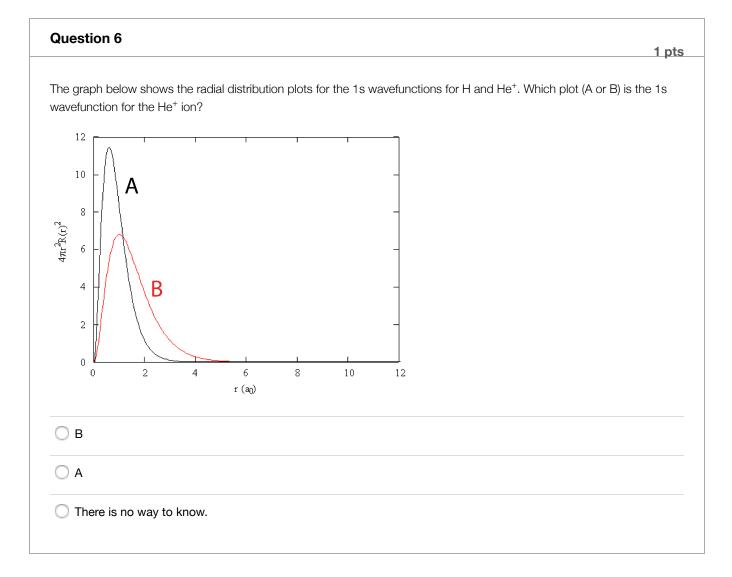
This is a preview of the published version of the quiz

Started: Sep 25 at 6pm

Quiz Instructions

Homework 05 - H Atom and Electron Configuration

Question 1	1 pt
Which of the following experiments provided evidence that the electrons in atoms are arranged i	n distinct energy levels?
O the existence of elements with non-integer atomic weights	
the scattering of alpha particles by a metal foil	
O the results of the Millikan oil-drop experiment	
the observation of line spectra from gas discharge tubes	


Question 2	1 pts
Assume n_1 and n_2 are two adjacent energy levels of an atom. The emission of radiation with the longest wavelen occur for which two values of n_1 and n_2 ?	igth would
8,7	
0 4,3	
7,6	
2,1	

Question 3

Use the Rydberg formula for atomic hydrogen to calculate the wavelength of the photon emitted in the transition of an electron from n=4 to n=2.
O 486 nm
○ 94.9 nm
○ 8.63 nm
O 205 nm

	1 pts
What is the name given to the spectroscope series to which the transition described in question 3 belongs?	
O Brackett series	
O Lyman series	
O Balmer series	
O Paschen series	

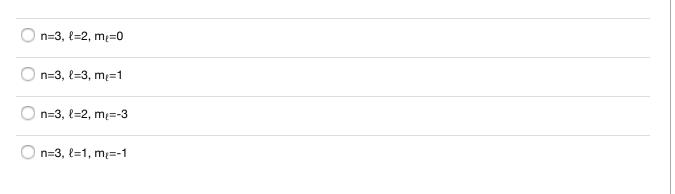
Question 5	1 pts
In what region of light will the photons emitted in question 3 lie?	
🔿 visible, red	
🔿 visible, yellow	
🔿 visible, blue	
O ultraviolet	

Question 7	1 pts
What is the maximum number of electrons that can have the quantum number n=2 in an atom?	
0 8	
0 18	
0 6	
○ 2	

Question 8	1 pts
------------	-------

The three quantum numbers for an electron in a hydrogen atom in a certain state are n=4, ℓ =2, and m $_{\ell}$ =1. The electron is located in what type of orbital?

🔘 Зр			
0 4d			
🔘 3d			
○ 4p			


Question 9	1 pts
The number that describes the main energy level of an electron in an atom is	
\bigcirc the magnetic quantum number, $m_\ell.$	
O the atomic number, Z.	
O the principal quantum number, n.	
\bigcirc the angular momentum quantum number, $\ell.$	

Question 10	1 pts
Can an electron in an atom be in an energy level described by the set of quantum numbers n=5, ℓ =3, m $_\ell$ =-2?	
\bigcirc No, because m $_\ell$ cannot be negative.	
\bigcirc No, because m _l must equal ±1.	
O No, because ℓ must equal n-1.	
O Yes.	

Question 11

1 pts

An electron in a 3d orbital could have which of the following quantum numbers?

Question 12	1 pts
How many p electrons does Se (atomic number 34) possess?	
0 18	
34	
O 4	
0 16	

Question 13	1 pts
For which H-atom wavefunction are you most likely to find the electron farthest from the nucleus?	
○ 2s	
○ 2p	
○ 4p	
🔘 Зр	

Que	estion 14	1 pts

The transition metals are elements with partially filled	
◯ f subshells.	
◯ s subshells.	
O d subshells.	
O p subshells.	

Question 15	1 pts
Which element is predicted to have the ground-state electron configuration shown below? [Ne] 3s ² 3p ⁴	
aluminum	
O chlorine	
◯ sulfur	
◯ silicon	

Question 16	1 pts
Which of the following is the valence electronic structure for a halogen?	
◯ ns ² np ⁶	
\bigcirc ns ² nd ¹⁰	
◯ ns ² np ⁵	
◯ ns ²	

Question 17	1 pts
In the Aufbau order of occupancy of electronic energy levels, the level occupied just after 5p is	
○ 3f	
○ 6s	
🔘 5d	
○ 4d	

Question 18	1 pts
The electron configuration for the Mn atom is	
\bigcirc 1s ² 2s ² 2p ⁶ 3s ² 3p ³	
\bigcirc 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁵	
\bigcirc 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 4p ⁵	
O 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁷	

1 pts
ervation can

Question 20	1 pts
Which of the following atoms has the largest radius?	
○ Ne	
OBr	
CI	
OF	

Question 21	1 pts
As an atom's radius decreases	
its ionization energy does not change.	
its ionization energy increases.	
O its ionization energy decreases.	
 its ionization energy will either increase or decrease depending on whether you are going up a column or a row. 	across

Question 22	1 pts
Which of the following would be expected to have the highest first ionization energy?	
◯ Ar	
🔿 Si	
CI	
🔿 Na	
◯ Xe	

Question 23	1 pts
How many s electrons does P (atomic number 15) possess?	
0 6	
0 2	
O 5	
O 4	

Question 24	1 pts
How many values of the quantum number ℓ are possible when n=5?	
O 4	
○ 7	
0 5	
0 6	

Question 25	1 pts
How many values of m_{ℓ} are allowed for an electron in a 5f subshell?	
○ 7	
0 6	
0 5	
○ 4	

Question 26	1 pts
How many values of m_ℓ are allowed for an electron in a 2s subshell?	
O 4	
0 1	
O 3	
O None of these.	

Question 27	1 pts
How many subshells are there in the shell with n=3?	
2	
3	
O 4	
0 1	

Question 28	1 pts
The diameter of the electron density of an atom is roughly	
O None of these.	
🔘 10 - 50 nm	
🔘 1 - 5 nm	
○ 0.1 - 0.5 nm	

	Question 29	1 pts
_		
	For which of the following elements would the size of the neutral atom (atomic radius) be the largest?	
	◯ Rb	
	◯ Na	
	◯ Sr	
	O Ca	

Question 30	1 pts
Write an equation that represents the second ionization energy of nickel.	
\bigcirc Ni(g) \longrightarrow Ni ⁺ (g) + e ⁻	
\bigcirc Ni(g) \longrightarrow Ni ²⁺ (g) + 2e ⁻	
\bigcirc Ni(g) \longrightarrow Ni ²⁺ (g) + e ⁻	
\bigcirc Ni ⁺ (g) \longrightarrow Ni ²⁺ (g) + e ⁻	

Quiz saved at 6:01pm	Submit Quiz